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Abstract. The parameters of the σ-ω-ρ model in the relativistic mean-field theory with nonlinear σ-meson
self-interaction are determined by nuclear-matter properties, which are taken as those extracted by fits to
data based on nonrelativistic nuclear models. The values of the relevant parameters are C2

σ ∼ 94, C2
ω ∼ 32,

C2
ρ ∼ 26, b ∼ −0.09, c ∼ 1, and the σ-meson mass mσ ∼ 370 MeV, while the value of the calculated nuclear-

surface thickness is t ∼ 1.4 fm. The field system is shown to be stable, since the σ-meson self-interaction
energy is a lower bound in this whole parameter region with positive c. On the other hand, the effective
nucleon mass M∗ is larger than 0.73M , if the symmetry incompressibility Ks is assumed to be negative
and the nuclear-matter incompressibility K0 is kept less than 300 MeV.

PACS. 21.65.+f Nuclear matter – 24.10.Jv Relativistic models

1 Introduction

Finite nuclei are found in states near the nuclear-matter
standard state (ρN = ρ0, δ = 0), where ρN is the nucleon
density and δ = (ρn − ρp)/ρN the relative neutron excess
or nuclear-matter asymmetry, and ρ0 is the nucleon den-
sity at the equilibrium state of symmetric nuclear matter
with minimum energy per nucleon. Our actual knowledge
of nuclear matter at the present time is mainly about nu-
clear matter at states close to this point (ρ0, 0). In this
case, the nuclear-matter equation of state can be written
approximately as [1,2]

e(ρN , δ) = −a1 +
1
18

(
K0 + Ksδ

2
)(ρN − ρ0

ρ0

)2

+
[
J +

L

3

(
ρN − ρ0

ρ0

)]
δ2, (1)

which is specified by the standard density ρ0, volume en-
ergy a1, symmetry energy J , incompressibility K0, sym-
metry incompressibility Ks and density symmetry L. The
most interesting quantity for supernova explosion calcu-
lations is the nuclear incompressibility K0 which dictates
the balance between gravity and internal pressure of the
stellar system [3], while the most interesting quantities for
heavy-ion collision studies are the nuclear incompressibil-
ity K0 and the symmetry incompressibility Ks which have
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influences on side-flow effects and isotopic distributions of
the collisions, respectively [4].

There is no direct experimental measurement of these
quantities. They can be determined only from fits to data
based on some specific nuclear model. Therefore, our ac-
tual knowledge about these quantities is still essentially
model dependent. However, if different models give val-
ues which are close to each other within some reason-
able range, then these values can be considered as realistic
ones. Nowadays, the quantities which are known with nice
precision are ρ0, a1, J and K0, the last two still being un-
der active investigation.

As starting point for the relativistic microscopic de-
scription of the nuclear many-body system, within the
framework of quantum hadrodynamics, the well-studied
σ-ω-ρ model with nonlinear σ-meson self-interaction is
able to describe the saturation and other properties of nu-
clear matter [5]. However, the symmetry incompressibility
Ks of nuclear matter calculated by the parameter sets ex-
isting in the literature for this nonlinear σ-ω-ρ model is
positive, which is opposite to that given by nonrelativistic
models of nuclei [2].

Actually, most of the expectations based on non-
relativistic models give negative Ks [4], e.g., Myers-
Swiatecki [6], Skyrme [7] and Tondeur [8] models. In par-
ticular, the minimally model-dependent data fit to nu-
clear masses and monopole resonance energies gives Ks =
−190 MeV [9]. Furthermore, the Ks experimentally ex-
tracted from isoscalar giant monopole resonance energies



162 The European Physical Journal A

is between −566 ± 1350 to 34 ± 159 MeV [10], which also
strongly suggests negative values for Ks. Physically, as it
can be seen from eq. (1), Ks < 0 means that the nuclear
equation of state becomes softer when the asymmetry δ
increases.

The relevant question is: is this positiveness of the sym-
metry incompressibility Ks given by relativistic mean-field
theory a manifestation of intrinsic properties of the model
itself, or does it just reflect the selection of input data for
fitting the model parameters?

The number of input data for fitting the model param-
eters in the relativistic mean-field theory is at most only
29, such as in a recent generalization of the model with
13 free parameters based on effective-field theories [11–
13]. This is much less than the number of input data
taken into account in similar fits in any nonrelativistic
model. For example, in the data fit based on the Thomas-
Fermi approximation with a generalized Seyler-Blanchard
nucleon-nucleon interaction and with only 7 free parame-
ters, a total of 1654 measured nuclear masses have been
included, beside other data such as the nuclear-surface dif-
fuseness and the optical-model depths as well as the fission
barriers, with the fit to nuclear masses displaying a root
mean square deviation of only 0.655 MeV [6]. Therefore,
nuclear-matter quantities are fitted to at most 29 data
in the relativistic mean-field theory, whereas they are fit-
ted to more than 1654 in nonrelativistic phenomenological
theories. From the data fit point of view, it would be in-
teresting to discuss the confidence level of these model
parameters which are fitted to only a few tens of experi-
mental data.

In this case, it is likely that this positiveness of
the symmetry incompressibility Ks, given by relativis-
tic mean-field theory, is not the manifestation of intrinsic
properties of the model itself, but depends on the selection
of input data to be considered in the parameters fit. It is
reasonable to expect that the situation will be improved
very much when more experimental outcomes can be in-
cluded, in the near future, in the data fit of parameters in
the relativistic mean-field theory. As a consequence, the
nuclear-matter properties calculated by these newly fitted
parameters will be closer to those given by nonrelativis-
tic models, and eventually can yield a negative symmetry
incompressibility Ks.

Motivated by this expectation, it is worthwhile to see
what will be obtained if the model parameters of the
relativistic mean-field theory are determined by nuclear-
matter properties such as given by data fit based on non-
relativistic nuclear models, since a better data fit with
much more data in the relativistic mean-field theory is
not yet available. In other words, we go back to the way
of determining parameters such as in the original work of
Walecka [14].

The purpose of this paper is to show that a stable
result with negative symmetry incompressibility Ks and
larger effective nucleon mass M∗ can be obtained, if pa-
rameters are fitted to reasonable nuclear-matter proper-
ties. Firstly, the well-studied σ-ω-ρ model with nonlinear
σ-meson self-interaction, having 6 free parameters, will be

considered. Sections 2 and 3 address the theoretical for-
malism for infinite and semi-infinite nuclear matters, re-
spectively. Section 4 gives the numerical result, and sect. 5
presents a short discussion and summary.

2 Formalism for infinite nuclear matter

The σ-ω-ρ model of the relativistic mean-field theory is
specified by the following Lagrangian density [5](we use
natural units with h̄ = c = 1):

L = ψ[γµ(i∂µ − gωωµ − gρτ ·bµ) − (M − gσφ)]ψ

+
1
2
(∂µφ∂µφ − m2

σφ2) − 1
3
Mb(gσφ)3

−1
4
c(gσφ)4 − 1

4
FµνFµν +

1
2
m2

ωωµωµ

−1
4
Bµν·Bµν +

1
2
m2

ρbµ·bµ, (2)

where Fµν = ∂µων − ∂νωµ, Bµν = ∂µbν − ∂νbµ; ψ, φ,
ω and bµ are the nucleon, σ-, ω- and ρ-meson fields with
masses M , mσ, mω and mρ, respectively, while gσ, gω and
gρ are the respective meson-nucleon coupling constants; b
and c are the nonlinear term coefficients, and τ are isospin
matrices. As M , mω and mρ are taken from experiment,
the model parameters are gσ, gω, gρ, b, c and mσ.

The nuclear-matter equation of state derived from
this Lagrangian density can be expressed in terms of the
nuclear-energy density E as e = E/ρN − M , and

E = Ek + Eσ + Eω + Eρ , (3)

Ek =
M4ξ4

π2

∑
i=p,n

F1(ki/ξM) , (4)

Eσ = M4

[
1

2C2
σ

(1 − ξ)2 +
1
3
b(1 − ξ)3 +

1
4
c(1 − ξ)4

]
, (5)

Eω =
C2

ωρ2
N

2M2
, (6)

Eρ =
C2

ρρ2
N

2M2
δ2 , (7)

where kp(n) are the proton (neutron) Fermi momenta, re-
spectively

ξ =
M∗

M
= 1 − gσ

M
φ , (8)

Ci = gi
M

mi
, i = σ, ω, ρ, (9)

and the function Fm(x) is defined as (see ref. [2] for de-
tails):

Fm(x) =
∫ x

0

dxx2m
√

1 + x2 . (10)

The reduced effective nucleon mass ξ and thus the field φ
are determined by

(1 − ξ) + bC2
σ(1 − ξ)2 + cC2

σ(1 − ξ)3 =
C2

σ

M3
ρs , (11)
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where the scalar density ρs can be expressed as

ρs =
M3ξ3

π2

∑
i=p,n

f1(ki/ξM), (12)

and the function fm(x) is defined as (see ref. [2] for details)

fm(x) =
∫ x

0

dx
x2m

√
1 + x2

. (13)

The model parameters related to the nuclear equation of
state are C2

σ, C2
ω, C2

ρ , b and c. As mσ is the inverse Comp-
ton wavelength of the σ-meson, it is related only to the
range of nuclear force and thus to the finite-size effects,
such as surface thickness, surface energy and shell effects
of the nuclei.

Once the equation of state is known, the following for-
mula for pressure p can be obtained:

p = −E + ρN
∂E
∂ρN

=
1
3
Ek − 1

3
Mξρs − Eσ + Eω + Eρ. (14)

The standard state (ρN = ρ0, δ = 0) is defined by the
equilibrium condition, p (ρ0, 0) = 0. The standard density
ρ0 can be written in terms of the nuclear radius constant
r0 or the nucleon Fermi momentum kF as

ρ0 =
1

4πr3
0/3

=
2k3

F

3π2
. (15)

The 6 quantities which specify the nuclear-matter
properties near the nuclear-matter standard state, i.e., ρ0,
a1, J , K0, Ks and L, can be expressed in terms of 5 param-
eters C2

σ, C2
ω, C2

ρ , b and c [2]. Conversely, the 5 parameters
can be fixed if 5 of these 6 quantities are known. In this
case, we will choose r0, a1, K0, J and Ks as input data,
where r0 is equivalent to ρ0. Specifically, the procedure is
as follows.

At the standard state (ρ0, 0), e(ρ0, 0) = −a1, and Eρ =
0, we have

Ek + Eσ + Eω = ρ0(M − a1). (16)

In addition, the equilibrium condition, p(ρ0, 0) = 0, can
be written as

1
3
(Ek − Mξρs) − Eσ + Eω = 0. (17)

The following formulas can be derived from the above two
equations:

C2
ω =

2M2

ρ2
0

Eω =
M2

ρ2
0

[
ρ0(M − a1)− 1

3
(4Ek−Mξρs)

]
, (18)

Eσ =
1
2

[
ρ0(M − a1) − 1

3
(2Ek + Mξρs)

]
. (19)

Furthermore, eqs. (5) and (11) can be combined to give
the parameters b and c as

b =
12Eσ

M4(1 − ξ)3
− 3ρs

M3(1 − ξ)2
− 3

C2
σ(1 − ξ)

, (20)

c = − 12Eσ

M4(1 − ξ)4
+

4ρs

M3(1 − ξ)3
+

2
C2

σ(1 − ξ)2
. (21)

Finally, the equation for symmetry energy J [2] yields

C2
ρ =

2M2

ρ0

(
J − 1

6
k2
F√

k2
F + M2ξ2

)
. (22)

3 Determination of σ-meson mass

Having already 5 parameters C2
σ, C2

ω, C2
ρ , b and c fixed

by nuclear-matter properties, the sixth parameter mσ can
be determined by quantities related to the nuclear-force
range, such as the surface thickness or the surface dif-
fuseness of ground-state finite nuclei [15], the diffraction-
minimum-sharp radius of finite nuclei [11], or the sur-
face energy of semi-infinite nuclear-matter system. In or-
der to be consistent with the determination of the above-
mentioned 5 parameters by infinite nuclear-matter prop-
erties, we choose the surface energy a2 of the semi-infinite
nuclear-matter system to calculate the σ-meson mass mσ.

As mσ involves the nuclear-force range, its value should
be obtained by solving the field equations. In order to do
that, we choose the standard Thomas-Fermi approxima-
tion, and adjust the value of mσ to reproduce the known
nuclear-surface energy a2 such as determined by nonrela-
tivistic nuclear models. We have to keep in mind that this
is only a very roughly evaluation to get some preliminary
insight on this problem.

The equations to be solved, for the semi-infinite
nuclear-matter system along the z-axis, are(

d2

dz2
− m2

σ

)
φ = −gσρs + g2φ

2 + g3φ
3 , (23)

(
d2

dz2
− m2

ω

)
ω0 = −gωρN , (24)

µ = gωω0 +
[
k2
F + (ξM)2

]1/2
, (25)

where g2 = Mbg3
σ, g3 = cg4

σ and µ is the nucleon chemical
potential of symmetric nuclear matter. The procedure to
solve these equations can be found in refs. [16–18] and
references therein.

The formula to calculate the surface energy a2 is [19]

a2 = 4πr2
0

∫ +∞

−∞
dz[E(z) − E(−∞)ρN (z)/ρ0] . (26)

For the nuclear-energy density E(z), eqs. (3) and (4) are
still valid, but

Eσ(z) =
1
2

[(
dφ

dz

)2

+ m2
σφ2

]
+

1
3
g2φ

3 +
1
4
g3φ

4 (27)

and

Eω(z) =
1
2

[(
dω0

dz

)2

+ m2
ωω2

0

]
. (28)

For a symmetric system, δ = 0, ρ-meson field quantities
do not appear in the energy density calculation.
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4 Numerical result

For given r0, a1, ξ, C2
σ and J , the procedure and formu-

las given in sect. 2 can be used to obtain C2
ω, C2

ρ , b and
c, and thus K0, Ks and L [2]. With the calculated K0

and Ks, then we can fix ξ and C2
σ. In this calculation,

M = 938.9 MeV and h̄c = 197.327053 MeV fm have been
used, and the following quantities, with its experimentally
acceptable values [20], have been chosen as input data:

r0 ≈ 1.14 fm, a1 ≈ 16 MeV. (29)

Figure 1 plots the calculated Ks vs. K0 for given ξ. The
solid curves from top to bottom correspond to ξ = 0.5,
0.6, 0.7, 0.8 and 0.85, respectively. It can be seen that
Ks is negative only for ξ larger than about 0.7–0.8, if
K0 ≤ 300 MeV is assumed. This is shown more clearly in
fig. 2, where the calculated Ks vs. ξ is displayed for given
K0. The solid curves from top to bottom correspond to
K0 = 200, 300, 400 and 500 MeV, respectively. It is shown
that Ks is negative when ξ is larger than about 0.73, for
K0 ≤ 300 MeV.

Figure 3 shows the calculated C2
σ vs. K0 for given ξ.

The solid curves from top to bottom correspond to ξ =
0.5, 0.6, 0.7, 0.8 and 0.85, respectively. Figure 4 gives the
calculated C2

ω vs. ξ. It can be seen from eq. (18) that C2
ω

depends only on ξ, for given r0 and a1. The calculation
of C2

ρ depends, beside ξ, also on the input value of J and
fig. 5 displays the calculated C2

ρ vs. ξ for given r0, a1 and
J = 30 MeV. In turn, L depends, beside ξ and J , also
on the input value of K0, and fig. 6 shows the calculated
L vs. ξ for given r0, a1, J = 30 MeV and K0. The solid
curves from top to bottom correspond to K0 = 200, 300,
400 and 500 MeV, respectively.
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Fig. 1. Calculated Ks vs. K0 for given r0 = 1.14 fm, a1 =
16 MeV and ξ. The solid curves from top to bottom correspond
to ξ = 0.5, 0.6, 0.7, 0.8 and 0.85, respectively.

0 .4 0 0 .5 0 0 .6 0 0 .7 0 0 .8 0 0 .9 0

ξ

- 1 0 0

0

1 0 0

2 0 0

3 0 0

4 0 0

5 0 0

K
S

(M
eV

)

K 0 = 2 0 0 M eV

3 0 0 M eV

4 0 0 M eV

5 0 0 M eV

Fig. 2. Calculated Ks vs. ξ for given r0 = 1.14 fm, a1 =
16 MeV and K0. The solid curves from top to bottom corre-
spond to K0 = 200, 300, 400 and 500 MeV, respectively.
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Fig. 3. Calculated C2
σ vs. K0 for given r0 = 1.14 fm, a1 =

16 MeV and ξ. The solid curves from top to bottom correspond
to ξ = 0.5, 0.6, 0.7, 0.8 and 0.85, respectively.

Figure 7 presents the nonlinear coefficient b vs. K0 for
given ξ. On the right-hand side of the plot, the first three
curves correspond to ξ = 0.5, 0.6 and 0.7 from top to
bottom, respectively. In the middle of the plot, the lower
two curves correspond to ξ = 0.8 and 0.85 from top to
bottom, respectively, being the first curve scaled by 1/2
and the second one by 1/10.

Figure 8 displays the nonlinear coefficient c vs. K0 for
given ξ. On the right-hand side of the plot, the solid curves
correspond to ξ = 0.5, 0.6, 0.7, 0.8 and 0.85 from bottom
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Fig. 4. Calculated C2
ω vs. ξ for given r0 = 1.14 fm and a1 =

16 MeV.
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Fig. 5. Calculated C2
ρ vs. ξ for given r0 = 1.14 fm, a1 =

16 MeV and J = 30 MeV.

to top, respectively. The value of c should be scaled by
1/10 for the curve of ξ = 0.8, while by 1/50 for the curve
of ξ = 0.85. It can be seen from fig. 8 that c is positive, if
ξ is larger than about 0.7–0.8, for K0 ≤ 300 MeV.

In addition to these general results, it is worthwhile to
see what could be obtained specifically, if realistic nuclear-
matter properties, extracted from measured data of finite
nuclei by nonrelativistic models, are used as input data.
In this case, the results given by Myers-Swiatecki phe-
nomenological nucleon-nucleon interaction [6,21], Skyrme
interaction [7] as well as Tondeur interaction [8] have been
employed.
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Fig. 6. Calculated L vs. ξ for given r0 = 1.14 fm, a1 = 16 MeV,
J = 30 MeV and K0. The solid curves from top to bottom
correspond to K0 = 200, 300, 400 and 500 MeV, respectively.
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Fig. 7. Nonlinear coefficient b vs. K0 for given r0 = 1.14 fm,
a1 = 16 MeV and ξ. The solid curves correspond to ξ = 0.5,
0.6, 0.7, 0.8 and 0.85, respectively.

The results of the calculation are presented in table 1.
The input data set (r0, a1,K0, J,Ks) is taken from the
compilation of ref. [22]. MS stands for the Myers-Swiatecki
interaction, SIII, Ska, SkM, SkM∗ and RATP for the
Skyrme interactions, and Tondeur for the Tondeur inter-
action. It is worthwhile to note that the input value of Ks

is negative for all of these interactions.
The results have shown that the model parameters

C2
σ ∼ 94, C2

ω ∼ 32, C2
ρ ∼ 26, b ∼ −0.09, and c ∼ 1.
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Table 1. The nuclear-matter properties r0 (fm), a1 (MeV), J (MeV), K0 (MeV), L (MeV), a2 (MeV), the parameters C2
σ, C2

ω,
C2

ρ , b, c, mσ (MeV), the effective nucleon mass M∗/M and the nuclear-surface thickness t (fm), for nonlinear σ-ω-ρ model in
the relativistic mean-field theory. See text for details.

r0 a1 K0 J Ks L a2 M∗/M C2
σ C2

ω C2
ρ b c mσ t

MS 1.140 16.24 234.4 32.65 −147.1 85.55 18.63 0.8934 92.728 30.908 27.729 −0.09203 1.1137 363.94 1.45

SIII 1.180 15.86 355.5 28.16 −393.9 72.87 18.13 0.8774 77.041 47.982 24.665 −0.15264 1.0935 551.27 0.89

Ska 1.154 15.99 263.1 32.91 −78.45 86.77 18.79 0.8851 96.522 38.415 29.434 −0.08115 0.8458 390.88 1.39

SkM 1.142 15.77 216.6 30.75 −148.8 79.90 16.85 0.8973 95.423 28.962 25.294 −0.08287 1.1499 366.12 1.42

SkM∗ 1.142 15.77 216.6 30.03 −155.9 77.73 17.51 0.8975 94.984 28.842 24.267 −0.08441 1.1655 354.85 1.48

RATP 1.143 16.05 239.6 29.26 −191.3 75.43 18.80 0.8936 89.460 31.269 23.183 −0.10318 1.1808 371.44 1.43

Tondeur 1.145 15.98 235.8 19.89 −39.78 47.60 18.41 0.8862 107.753 36.378 9.705 −0.04911 0.6885 352.64 1.57
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K0 (M e V )

- 0 . 0 2

- 0 . 0 1
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0 . 6
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0 .8 , 1 / 1 0

ξ= 0 .8 5 , 1 / 5 0

Fig. 8. Nonlinear coefficient c vs. K0 for given r0 = 1.14 fm,
a1 = 16 MeV and ξ. The solid curves correspond to ξ = 0.5,
0.6, 0.7, 0.8 and 0.85, respectively.

It is also interesting to note that the effective nucleon
mass M∗/M is around 0.89, which is much larger than
that given by the data fits existing in the literature [15].
Furthermore, the nonlinear coefficient c is positive, which
means the field system is stable for all of these parameter
sets.

In the determination of mσ, the following values are
used:

mω = 783 MeV, mρ = 763 MeV. (30)

Then the nuclear-surface thickness t, defined as the 90%-
10% fall-off distance of the nucleon density in the surface
region, can be calculated. The surface energy a2 used in
this calculation is listed in table 1. The value of a2, for
the Myers-Swiatecki interaction is taken from ref. [6], for
the Skyrme interaction and Tondeur interaction are taken
from refs. [7] and [8], respectively. The σ-meson mass mσ

determined by the Thomas-Fermi approximation and the
simultaneously calculated nuclear-surface thickness t are
listed, respectively, in the last two columns of this table.

The determined σ-meson mass mσ is around 370 MeV,
except SIII which gives mσ = 551.27 MeV. However, both
the nuclear radius constant r0 = 1.180 fm and the nuclear
incompressibility K0 = 355.5 MeV given by SIII are much
larger than others. The calculated nuclear-surface thick-
ness t is around 1.4 fm, except that given by SIII, which
is t = 0.89 fm.

5 Discussion and summary

The present work is based on the expectation that the
nuclear-matter properties, i.e., the standard density ρ0,
volume energy a1, symmetry energy J , incompressibility
K0, symmetry incompressibility Ks and density symmetry
L of infinite nuclear matter, as well as the surface energy
a2 of the semi-infinite nuclear-matter system, should have
values which are independent of nuclear models, either rel-
ativistic mean-field models or nonrelativistic nuclear mod-
els.

Motivated by this expectation, the σ-ω-ρ model pa-
rameters of the relativistic mean-field theory with non-
linear σ-meson self-interaction are determined by nuclear-
matter properties, which are taken as those given by data
fit based on nonrelativistic nuclear models. The results
show that C2

σ ∼ 94, C2
ω ∼ 32, C2

ρ ∼ 26, b ∼ −0.09, c ∼ 1,
and the σ-meson mass mσ ∼ 370 MeV, while the calcu-
lated nuclear-surface thickness t ∼ 1.4 fm.

The field system is stable in this whole parameter re-
gion with positive c, since there is a lower limit for the
σ-meson self-interaction energy. It is also shown that the
effective nucleon mass M∗ is larger than 0.73M , if the
symmetry incompressibility Ks is assumed to be negative
and the nuclear-matter incompressibility K0 is kept less
than 300 MeV.

It should be noted that the parameters C2
σ, C2

ω, C2
ρ , b

and c depend only on the choice of the properties of infi-
nite nuclear matter; they do not depend on the choice of
the properties of semi-infinite nuclear-matter system, and
thus do not depend on the specific approximation used to
solve the field equations. Therefore, as mσ depends on the
value of a2 through the chosen approximation, it will give
a different value if another approximation is chosen, for ex-
ample the Hartree approximation instead of the Thomas-
Fermi approximation we have adopted here.
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The σ-meson mass mσ is expected to be increased to
around 400 MeV, if the Hartree approximation, instead of
the Thomas-Fermi approximation, is used [16–18]. How-
ever, even so, this value is still lower than that given by the
existing data fits [2]. Therefore, determined in this way,
the parameters C2

σ, C2
ω, C2

ρ and mσ are much smaller while
the absolute values of b and c are much larger than those
existing in the literature. In addition, the nuclear-surface
thickness t calculated from these parameters is smaller
than what is acceptable. This is due to the small mσ, be-
cause the smaller mσ, the larger the range of the nuclear
force is, thus the surface thickness should be reduced in
order to keep the same surface energy. On the other hand,
if the nuclear-surface thickness t, instead of the nuclear-
surface energy a2, is chosen to fix the σ-meson mass mσ,
the result will be even worse. In this case, mσ will be re-
duced further as t increases to an acceptable value, and
thus the surface energy a2 will be larger than what is given
by nonrelativistic models [16–18].

The arisen question is: is this parameter set accept-
able? The answer to this question depends on the criterion
applied to the final result. If the agreement between calcu-
lated and measured nuclear masses is required, it is very
likely to be able to accept this parameter set, because the
main quantities which have some influence on this agree-
ment are just the standard density ρ0, volume energy a1,
symmetry energy J , incompressibility K0, symmetry in-
compressibility Ks and density symmetry L of infinite nu-
clear matter, and the surface energy a2 of semi-infinite
nuclear-matter system. However, the σ-meson mass mσ

and thus the nuclear-surface thickness t are smaller than
the usually accepted values, they will have some influence
on the nucleon distribution in the nuclear-surface region,
on the spin-orbit interaction and thus on the nuclear-shell
effects. Therefore, the calculation of finite-nuclei proper-
ties by using this parameter set is needed, before we can
say any definite words about this question.

Our conclusion is: the positiveness of the symmetry in-
compressibility Ks given by relativistic mean-field theory
is not a manifestation of intrinsic properties of the model
itself; it is possible to have negative Ks, if appropriate
input data are chosen for fitting the model parameters.
However, it seems that, in order to have negative Ks, the
price to pay is to have a small mσ and thus a small surface

thickness t, in this σ-ω-ρ model of the relativistic mean-
field theory with a nonlinear σ-meson self-interaction.
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Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ),
Brazil.

References

1. W.D. Myers, W.J. Swiatecki, Ann. Phys. (N.Y.) 55, 395
(1969).

2. K.C. Chung, C.S. Wang, J.A. Santiago, J.W. Zhang, Eur.
Phys. J. A 9, 453 (2000).

3. A. Akmal, V.R. Pandharipande, D.G. Ravenhall, Phys.
Rev. C 58, 1804 (1998).

4. B.A. Li, C.M. Ko, W. Bauer, Int. J. Mod. Phys. E 7, 147
(1998).

5. B.D. Serot, J.D. Walecka, Int. J. Mod. Phys. E 6, 515
(1997).

6. W.D. Myers, W.J. Swiatecki, Nucl. Phys. A 601, 141
(1996).

7. M. Brack, C. Guet, H.-B. H̊akansson, Phys. Rep. 123, 275
(1985).

8. F. Tondeur, Nucl. Phys. A 315, 353 (1978).
9. K.C. Chung, C.S. Wang, J.A. Santiago, Phys. Rev. C 59,

714 (1999).
10. S. Shlomo, D.H. Youngblood, Phys. Rev. C 47, 529 (1993).
11. R.J. Furnstahl, B.D. Serot, H.B. Tang, Nucl. Phys. A 598,

539 (1996).
12. H. Müller, B.D. Serot, Nucl. Phys. A 606, 508 (1996).
13. R.J. Furnstahl, B.D. Serot, H.B. Tang, Nucl. Phys. A 615,

441 (1997).
14. J.D. Walecka, Ann. Phys.(N.Y.) 83, 491 (1974).
15. P.-G. Reinhard, Rep. Prog. Phys. 52, 439 (1989).
16. J. Boguta, A.R. Bodmer, Nucl. Phys. A 292, 413 (1977).
17. W. Stocker, M.M. Sharma, Z. Phys. A 339, 147 (1991).
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